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Revealing the heterogeneity of CD41 T cells
through single-cell transcriptomics
Duncan M. Morgan, PhD,a,b Wayne G. Shreffler, MD, PhD,c,d,e and J. Christopher Love, PhDa,b Cambridge and Boston,

Mass
Single-cell RNA sequencing (scRNA-seq) offers the ability to
resolve whole transcriptomes of single cells with substantial
throughput, and it has revolutionized studies of gene expression.
The transcriptional resolution available can uncover fine
structures of biologic heterogeneity that are manifest among cell
populations. Here, we review the applications of scRNA-seq to
profile the phenotypes and clonotypes of CD41 T cells. First, we
describe challenges inherent to scRNA-seq that are important
for analysis of CD41 T cells, as well as the technical solutions
that are emerging to address these challenges. We then consider
major themes of the application of scRNA-seq to CD41 T cells,
including investigation of CD41 T-cell heterogeneity in model
systems, analysis of populations from the peripheral blood, and
the profiling of tissue-resident populations. We place emphasis
on capabilities unique to scRNA-seq, such as the ability to
obtain paired T-cell receptor and transcriptome information
from single T cells and the potential to elucidate interactions
between CD41 T cells and other cells in their environment.
Finally, we conclude by considering future areas of technologic
advancement and innovation through which scRNA-seq may
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further shape our understanding of the roles of CD41 T cells in
health and disease. (J Allergy Clin Immunol 2022;150:748-55.)
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tor sequencing, T helper cell, regulatory T cell

CD41 T cells play a central role in coordinating adaptive im-
mune responses.1,2 Individual naive CD41 T cells bear a speci-
ficity for antigen–MHC class II complexes that results from
expression of a single, uniquely rearranged T-cell receptor
(TCR). These cells are initially activated following stimulation
via interactions with a cognate antigen–MHC class II complex.
Subsequently, they undergo clonal expansion and differentiation
into one of a variety of subtypes, including helper T cells (TH1,
TH2, TH17, and follicular helper T [TFH] cells) and regulatory T
(Treg) cells.1-11 This process of differentiation is guided by sig-
nals available in the extracellular milieu, and the resulting line-
ages of CD41 T-cell subtypes are defined predominantly by
select transcription factors (ie, T-bet, Gata3, Ror-gt, Bcl6, and
Foxp3).1,2,4,12 The functional traits of each CD41 T-cell subtype
include distinct cytokine profiles that yield distinct effector func-
tions after a future encounter with antigens. A subset of expanded
CD41 clonotypes can also undergo differentiation into memory
CD41 cells, leading to the establishment of immunologic mem-
ory.13,14 In general, analytical characterizations of CD41 T cells
aim to resolve the phenotypes and specificities of these cells
present within a particular sample and uncover the biologic rela-
tionships within, such as those that may contribute to health or
disease.

Single-cell RNA sequencing (scRNA-seq) currently affords the
ability to analyze single cells with whole-transcriptome resolu-
tion, offering higher dimensionality than previous approaches for
analyzing individual cells, such as flow or mass cytometry, which
often rely on investigator-curated panels of markers, albeit with a
modest reduction in throughput (thousands to tens of thousands of
cells).15-17 Consequently, scRNA-seq is well suited to the study of
CD41 T cells, which comprise a functionally heterogenous pop-
ulation that also exhibits a level of plasticity.12,18,19 In addition,
scRNA-seq is compatible with a diverse array of sample types,
including samples from the peripheral blood and tissue biopsy
samples obtained from human patients. These features have
made scRNA-seq an increasingly important analytic technology
in both immunology and the broader biological sciences in the
past 10 years.

In this review, we describe advances in our understanding of
CD41 T-cell immunology enabled by scRNA-seq. We focus first
on unique challenges encountered in the application of scRNA-
seq to CD41 T cells and identify technical solutions that are
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emerging to address these challenges. We then describe 3 key
applications of scRNA-seq to the study of CD41 T cells,
including profiling of CD41 T-cell responses in model systems,
analyzing CD41 T-cell responses in samples obtained from pe-
ripheral blood, and understanding key functionalities of tissue-
resident CD41 T-cell populations. Lastly, we concludewith a dis-
cussion of developing and future capabilities of scRNA-seq and
consider how these advancements are poised to further extend
our knowledge of CD41 T-cell immunology.
ANALYSIS OF CD41 T CELLS WITH scRNA-seq
CD41 T cells are traditionally classified into discrete subtypes,

including TH1, TH2, TH17, and TFH cells, which are defined by the
expression of distinct transcription factors regulating their differ-
entiation and the expression of cytokines and other effector genes
that mediate their functions.6-11 These key transcripts, however,
are not necessarily among the most highly expressed genes, and
they constitute only a small fraction of the total mRNA present
in a single T cell. Thus, to accurately annotate CD41 T-cell phe-
notypes present in scRNA-seq data, the chemistries used for
amplification and library preparation must be sufficiently sensi-
tive to ensure robust recovery of these defining transcripts.
‘‘Gene dropout’’ (ie, the spotty detection of gene expression in
single-cell libraries that stems from incomplete recovery of
cellular mRNA) is exceedingly common in single-cell data anal-
ysis.20,21 To address this challenge, recent advances in the molec-
ular biology and chemistries for preparing libraries of cDNA for
sequencing have included approaches based on the synthesis of a
randomly primed second-strand of cDNA as an alternative to a
5-template switching reaction.22 Such improved conversion of
the mRNA yields libraries with enhanced informational
complexity, offering improved scalability and increased sensi-
tivity to detect these key transcripts. Improvements in the effi-
ciencies of transcript capture and amplification for sequencing
directly enhance the ability of scRNA-seq to resolve phenotypes
of CD41 T cells.

Second, to analyze clonal relationships between T cells and to
properly place individual T cells in the context of a response
against a particular antigen, it is useful to recover both phenotypic
information based on the transcriptome of a T-cell and knowledge
of the T cell’s rearranged TCR. Early demonstrations of single-
cell sequencing based on the isolation of individual cells into
microliter plates enabled the reconstruction of TCR rearrange-
ments in silico.23,24 By their nature, these solutions exhibit
reduced throughput compared with massively parallel platforms
for scRNA-seq, which utilize droplet encapsulation or microwell
isolation.25-28 In contrast, because massively parallel platforms
emphasize short gene reads to obtain digital counts of gene
expression instead of performing full-length RNA-seq, the depth
of coverage for the TCR variable regions obtained with these
platforms is very poor, limiting their ability to accurately identify
specific TCR rearrangements from most T cells. Recently,
new strategies compatible with massively parallel library con-
structions have developed for recovery of paired TCR-a/b vari-
able region sequences, including strategies utilizing specialized
RNA capture reagents,29 methods for targeted sequencing of
TCR-enriched libraries,30,31 and commercially available T-cell–
specific kits, such as the 10x Genomics 5‘ V(D)J 1 5‘ Gene
Expression kit (103 Genomics, Pleasanton, Calif). As a result,
scRNA-seq has become one of the most effective methods to
obtain paired TCR-a/b sequences that are matched with tran-
scriptional profiles of the same cells.

Lastly, T cells specific for any individual antigen are rare in
easily accessible samples, such as blood from a human pa-
tient.32-34 In tissue or tumor biopsy samples, antigen-specific T
cells may be expected to be enriched, but these samples are
more difficult to obtain and the total number of cells available
from these samples is often limited. These factors place an upper
bound on the number of CD41 T cells that can be reasonably ob-
tained in many contexts. Accordingly, robust studies of CD41

T cells require platforms for scRNA-seq that are compatible
with sparse cellular input while maintaining high rates of cell
and gene recovery and throughput sufficient to detect transcrip-
tional structures through unsupervised analysis. Platforms based
on the physical isolation of cells into subnanoliter wells, such
as Seq-Well, BD Rhapsody (BD Biosciences, Franklin Lakes,
NJ), or the Honeycomb Hive (Honeycomb Biotechnologies, Wal-
tham, Mass), rather than the encapsulation of single cells into
reverse-emulsion droplets, have demonstrated efficient rates of
cell recovery as well as compatibility with the technical advance-
ments already described.25 In addition, gentle gravity-based
loading of cells imposes less stress on cells than droplet encapsu-
lation, better preserving cell viability and ex vivo T-cell
phenotypes.35
REDEFINING T-CELL IDENTITIES IN MODEL

SYSTEMS
scRNA-seq enables analyses of whole transcriptomes from

individual cells with minimal bias rather than relying on curated
sets of markers for analysis. As a result, scRNA-seq has enabled
re-evaluation of classical CD41 T-cell phenotypes defined on the
basis of surface expression of a small set of proteinmarkers. Com-
parison of the transcriptomes of single CD41 T cells with their
surface phenotype has suggested that whereas some classic
T-cell subsets, such as naive CD41 T cells and memory CD41

T cells are dominated by a single, representative transcriptional
phenotype, other classic T-cell subsets, such as CD41 TH cells
and CD41 Treg cells, comprise multiple distinct transcriptional
phenotypes, suggesting that these higher resolution transcrip-
tional phenotypes can be more representative of the key features
of a T-cell population.36,37

scRNA-seq has also enabled the discovery of rare, discrete
populations of T cells with previously undescribed functionalities
(Fig 1, A). For example, a subpopulation of IL-13–producing TFH

cells required for the production of high-affinity IgE was discov-
ered by analyzing sorted PD-11CXCR51CD441CD41 TFH cells
in a model of allergic sensitization.38 Profiling of IL-101 CD41

T cells with scRNA-seq in a mouse model of inflammatory bowel
disease identified a proinflammatory population of IL-101Foxp3–

CD41 cells.39 Similarly, analysis of IL-101 CD41 T cells
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FIG 1. Conceptualization of CD41 T cell identities with scRNA-seq.A, Classification of T-cell phenotypes into
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recovered from the spleens of mice responding to chronic infec-
tion with lymphocytic choriomeningitis virus demonstrated the
presence of IL-101IL-211 TFH cells necessary for sustaining
germinal center reactions and humoral immunity during chronic
infection.40 A second study of lymphocytic choriomeningitis
virus profiled CD44high and GP66-specific CD41 T cells and
identified a small cluster of T cells with a central memory precur-
sor phenotype.41 This study demonstrated that an upregulated
transcription factor, Thpok, prevented the emergence of an
effector-like transcriptional program in this precursor population
and promoted memory differentiation. These studies have used
scRNA-seq to extend our knowledge of discrete CD41T-cell phe-
notypes by uncovering new T-cell subtypes and functionalities
associatedwith novel combinations of cytokines and transcription
factors.

Another feature of scRNA-seq analysis yielding novel insights
when applied to CD41 T cells is the conceptualization of
phenotypic states as related by a continuum of differentiation,
rather than as completely discrete populations (Fig 1, B). These
analyses often aim to construct cellular trajectories by utilizing
bioinformatic tools to construct pseudotemporal orderings or
analyze RNA velocity.42-46 For example, an analysis of CD41 T
cells either undergoing TH17 cell differentiation in vitro or ob-
tained from the central nervous system of mice with experimental
autoimmune encephalitis established a phenotypic continuum
present among these cells and identified novel regulators
associated with a pathogenic axis of TH17 differentiation.47 An
‘‘effectorness gradient’’ spanning from naive to central to effector
memory T cells and acting as a determinant of cytokine responses
has been established among CD41 T cells undergoing in vitro
polarization with different combinations of cytokines.48 Rather
than occupying discrete phenotypic states, colonic T cells have
been suggested to lie within a polarized effector continuum that
exhibits skewing in response to microbial or infectious perturba-
tion.49 These studies present alternative, continuous models of
CD41 T-cell identities, in contrast to traditional models that
classify CD41 cells into discrete phenotypes.

scRNA-seq is also particularly well suited to studies of
CD41 T-cell differentiation and plasticity (Fig 1, C). An approach
based on temporal mixtures of gaussian processes defined
trajectories of TH1 and TFH cell lineages in a model of
Plasmodium infection and revealed that single T-cell clones
bifurcate and populate both fates in this context.50 Longitudinal
measurements with scRNA-seq in a mouse model of
graft-versus-host disease revealed the divergence of alloreactive
CD41 T cells into either an effector fate, which exhibited
cytokine expression, or a quiescent state, which exhibited
minimal cytokine production but maintained recall potential
following secondary transplantation.51 scRNA-seq measurements
in a ‘‘provenance mapping’’ mouse model that uses a
photoconvertible protein to track the location of T-cell priming in
experimental autoimmune encephalitis demonstrated distinct
phenotypic profiles and homing patterns between T cells primed
in either the mediastinal or inguinal lymph node.52 Overall,
these studies provide new methodologies for the analysis of
CD41 T cells and have developed new insight into themechanisms
through which single clones of CD41 T cells differentiate into
heterogeneous fates.
PROFILING OF PERIPHERAL CD41 T-CELL

RESPONSES EX VIVO
The profiling of antigen-specific T-cell responses from periph-

eral blood is often used as a tool to understand the magnitude and
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FIG 2. Analysis of tissue-resident CD41 T cells with scRNA-seq. Cells recovered from biopsy samples from
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quality of CD41 T-cell responses against a particular antigen.
Although blood samples are easily obtained from human patients,
the abundance of cells specific for a particular antigen of interest
can vary widely depending on the disease context.32-34 Thus,
when analyzing CD41 T cells from the peripheral blood with
scRNA-seq, it is important to consider exactly how to isolate a
sufficiently large and enriched target population of T cells.

In some samples, such as peripheral blood samples obtained
during acute viral infection or following vaccination, the
magnitudes of antigen-specific T-cell responses present in the
peripheral blood may be sufficient to allow reliable analysis of
these cell populations without prior enrichment. In combination
with a novel strategy for gene module analysis and cell-cell
signaling network analysis, scRNA-seq analysis of PBMCs from
samples collected during the acute phase of HIV infection
revealed that peripheral CD41T cells uniquely upregulated genes
downstream of proinflammatory cytokines.53 Analyses of periph-
eral blood samples from patients with COVID-19 using
scRNA-seq have highlighted clonal expansions of CD41 T cells
expressing cytotoxic signatures and have demonstrated the reac-
tivities of these populations with COVID-19–derived anti-
gens.54-56 scRNA-seq has also revealed distinct FOXP3high and
MKI67high differentiation paths among Treg cells present in the
peripheral blood that were conserved in patients receiving
allogenic hematopoietic stem cell transplantatiom.57

Class II tetramer reagents have previously been used to isolate
antigen-specific CD41 T cells for scRNA-seq,58,59 but 2 limita-
tions of these reagents are their dependence on previously identi-
fied antigens and HLA types and the challenges in synthesizing
reagents compatible with a diverse array of antigens and HLA
types. As an alternative, many scRNA-seq studies have isolated
antigen-specific CD41 T cells using functional behaviors, such
as the upregulation of activation markers (often CD154, CD137,
and/or CD69), following culture with antigen ex vivo.60-62 This
approach exhibits minimal bias for specific epitopes or HLA types,
but it may also enrich a fraction of non–antigen-specific T cells
activated indirectly though cytokine signaling pathways (often
referred to as ‘‘bystander activation’’).63 Studies of allergen-
reactive CD41 T cells in food allergy have repeatedly demon-
strated heterogeneity among allergen-reactive cells, including the
detection of highly polarized TH2A cells in the peripheral
blood.64-68 A signature comprising an interferon response has
been identified among house dust mite (HDM) allergen–reactive
CD41 T cells isolated from the peripheral blood, and expression
levels of this signature amongTH andTreg cells differentiated asth-
matic patients with HDM allergy from asthmatic patients without
HDM allergy.67 In addition, paired TCR sequences obtained from
single-cell sequencing of antigen-reactive CD41 T cells have been
used to identity the peptide epitopes recognized these T cells in
patients with type I diabetes and autoimmune hepatitis.69,70

Longitudinal studies of peripheral blood samples with scRNA-
seq have also enabled the tracking of select clonal lineages in
human patients over time. Hu et al isolated peripheral CD41 T
cells by using class II tetramer reagents from longitudinal samples
obtained from patients with melanoma who were receiving
personalized neoantigen vaccines.59 scRNA-seq analysis of these
cells revealed neoantigen-specific clonotypes that could be de-
tected at multiple time points and that after patients had received
neoantigen vaccines, neoantigen-specific cells transitioned into
differentiation state from an initial naive state, followed by states
characterized by signatures associated with effector function and
activation-induced cell death, and finally to a memory state. In
addition, scRNA-seq paired with TCR sequencing of peanut-
reactive CD41 T cells from 12 patients with peanut allergy
revealed a diversity of clonally restricted phenotypic states pre-
sent among peanut-reactive CD41 T cells.66 A longitudinal anal-
ysis of the clonotypes recovered in this study demonstrated that
outcomes of peanut oral immunotherapy were associated with
reprogramming rather than with deletion of TH2A cell–like clo-
notypes. Similar studies could provide insight into the mecha-
nisms through which immunotherapies activate and reprogram
clonotypic lineages of T cells and could also enable noninvasive
monitoring of antigen-specific CD41 T-cell lineages in the
peripheral blood.
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UNDERSTANDING TISSUE-RESIDENT CD41 T-CELL

POPULATIONS
Many previous studies have used scRNA-seq to survey the cell

populations within biopsy samples, allowing construction of
cellular atlases of tissues or diseases of interest71-73 (Fig 2). Such
atlases have generated an improved understanding of tissue-
resident CD41 T-cell phenotypes across a wide spectrum of
diseases. For example, TH2 cells that exhibit a simultaneous up-
regulation of TH2 cytokines, receptors for epithelial-derived cyto-
kines, and genes associated with prostaglandin synthesis have
been identified in tissue samples across a wide range of allergic
diseases, including eosinophilic esophagitis (EoE), atopic derma-
titis, chronic rhinosinusitis, and asthma.35,74-79 Studies of cancer
biopsy samples have also identified novel CD41 T-cell pheno-
types,80-82 such as cytotoxic CD41 T cells, which have been
demonstrated to display cytotoxic activity against autologous
tumor cells.81,82

Tissue samples also provide a unique context for scRNA-seq
studies to leverage TCR data. Many studies have identified
clonotypic T-cell expansions associated with select CD41

T-cell phenotypes, highlighting the potential relevance of certain
populations in the disease contexts under investigation.35,66,78,80

In addition, the integration of TCR sequences with single-cell
transcriptome data can be used to identify potential relationships
between T-cell phenotypes. For example, a study of colon cancer
demonstrated TCR sharing between tumor-resident Treg cell and
other TH cell phenotypes, suggesting that these are induced Treg
cells generated from the polarization of preexisting TH cell
phenotypes.83

When samples frommultiple tissue sites are available, the TCR
can also be used as a unique barcode to track T-cell lineages
across different locations. scRNA-seq profiling of CD41 T cells
from different regions of the human colon and revealed that
whereas CD41 T-cell clonotypes were shared between the prox-
imal and sigmoid colon, the sigmoid colon was enriched for clon-
ally expanded TH1 cells and the cecum was enriched for clonally
expanded TH17 cells.

84 These data suggest possible roles for cell-
extrinsic factors in skewing T-cell phenotypes present in different
regions of the gastrointestinal tract. Recently, pathogenic effector
TH2 cell clonotypes that were common to both the peripheral
blood and esophageal biopsy were detected in patients with
EoE.35 A strategy of analyzing differentially expressed genes of
peripheral CD41 T cells with clonotypes matching those in the
tissue against other circulating TH2 clonotypes revealed an upre-
gulation of receptor GPR15 on esophagus-trafficking clonotypes
present in the peripheral blood, providingmechanistic insight into
the recruitment of these cells to the esophagus in EoE as well as a
method to enrich these cells from the peripheral blood.

A further advantage of scRNA-seq is the ability to simulta-
neously profile all cell types present in a given sample. Thus,
analyses of data from scRNA-seq can also suggest networks of
interactions between CD41 T cells and their microenvironment.
A variety of statistical frameworks based on databases of known
receptor-ligand interactions have been developed for this pur-
pose.85-89 A study of lung tissue from patients with or without
asthma has suggested that cell-cell interactions in the healthy
lung are dominated by tissue-resident memory and tissue migra-
tory CD41 cells, whereas in the asthmatic lung cell-cell interac-
tions are dominated by TH2 cells engaging in contact-mediated
interactions with the epithelium through KLRG1, CD103, and
CD49a.75 A similar analysis revealed that potential axes of
communication between pathogenic effector TH2 cells and eosin-
ophils in the esophagus of patients with EoEmay include TH2 cy-
tokines and eicosanoid signaling.35 The IL-18/IL-18R1 axis has
been suggested as a mechanism by which inflammatory changes
in enterocytes can suppress TH17 cell development and promote
Treg cell development in the gut of patients with in ulcerative co-
litis.90 A network of cell-cell communication axes constructed
from scRNA-seq data collected from lesional and nonlesional tis-
sue of patients with vitiligo has identified that the CCL5/CCR5
axis promoted positioning of Treg cells near CD81 cells and
was required for optimal suppression of CD81 effector cells by
Treg cells in this context.91

Although the majority of scRNA-seq–based studies focus on a
single disease context, several studies to date have focused on
comparing T-cell phenotypes across different tissue or disease
contexts. For example, scRNA-seq analysis of T cells recovered
from samples across a variety of inflammatory skin pathologies
identified signatures of CD41 T cells that were enriched in
leprosy and psoriasis.22 Two studies have profiled T cells present
in both lymphoid and nonlymphoid tissue samples and have es-
tablished signatures and trajectories associated with adaptation
to these distinct tissue niches.92,93 A pan-cancer T-cell atlas
comprising cells from 316 patients with 21 cancer types revealed
that tumor-reactive T cells were enriched for TNFRSF9-positive
Treg and polyfunctional TFH/TH1 cell phenotypes and suggested
that the emergence of these phenotypes are associated with TGF-
b and IFN-b signaling present in other T-cell metaclusters.94

Other studies have sought to establish computational frameworks
that enable the projection of single-cell data onto reference data
sets, potentially allowing comparison of data sets across a unified
transcriptional landscape.95,96 Efforts to compile, assemble, and
integrate scRNA-seq CD41 T cells recovered from various tissue
and disease contexts have the potential to establish the full pheno-
typic diversity of CD41 T cells and to enablewidespread compar-
ison of markers and signatures associated with different disease
states and immune responses.
FUTURE OUTLOOK FOR scRNA-seq OF CD41 T

CELLS
Single-cell transcriptomics remains a very rapidly advancing

technology in academic and commercial settings. Many new
single-cell methods aim to enable single-cell multi-omics: the
simultaneous acquisition of multiple modalities of data from
individual cells, often including whole-transcriptome
sequencing. These approaches include cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq), which en-
ables surface protein quantification with DNA-barcoded
antibodies, and cell hashing, a related technology that enables
the multiplexing of samples and offers greater flexibility in
experimental design.97,98 Specifically, studies of CD41 cells may
aim to adapt this technology to enable assessment of antigen
specificity with DNA-barcoded class II tetramer reagents, as
has been demonstrated with class I tetramer reagents for CD81

T cells.99,100

Several other approaches for single-cell multi-omics enable the
simultaneous analysis of transcriptional states with epigenetic
measurements, including chromatin accessibility,101,102 nucleo-
some occupancy,103,104 and DNA methylation.105,106 These
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technologies have helped to pinpoint key epigenetic drivers of
CD41T-cell differentiation107 andmay help to explore how inter-
actions between transcriptional and epigenetic features of CD41

T cells affect cellular states and functions. In addition, advances
in the feasibility of spatially resolved transcriptomics will help
to further answer questions surrounding the behaviors of CD41

T cells in tissue environments.108,109 Technology for tracing
cellular lineages that maintains compatibility with scRNA-seq
(eg, with the use of an evolving clustered regularly interspaced
short palindromic repeats [CRISPR] barcode) may enable intra-
clonal resolution of T-cell lineages, providing unprecedented res-
olution into the dynamics of CD41 T-cell differentiation and
division.110-113 These new approaches, in combination with the
increasing accumulation of published and publicly available
scRNA-seq data, have the potential to further refine our under-
standing of CD41 T-cell phenotypes and functionalities and to
generate large, multimodal references of T-cell phenotypes across
the entire spectrum of human disease.

Recent advances in computational strategies for bioinformatic
analysis of antigen-specific TCRs114-116 and platforms for epitope
discovery compatible with CD41 T cells117-119 have increased the
feasibility of matching antigen-specific TCRs with their specific
peptide-HLA epitopes. To date, a major bottleneck in this capa-
bility has remained the collection of paired TCR-a/b sequences
from clinical samples—especially sparse samples of antigen-
enriched CD41 T cells obtained from the peripheral blood or
CD41 T cells obtained from tissue biopsy samples. Future
scRNA-seq studies will likely leverage the capability of scRNA-
seq to profile TCR rearrangements to generate large data sets of
repertoire data. These data and future advances in repertoire anal-
ysis may fuel epitope discovery at a larger scale than previously
possible. Improved tools for the integration of single-cell repertoire
data with single-cell phenotyping may also provide additional
insight into long-standing questions in T-cell immunology about
how features of TCRs or epitopes influence the evolution of
CD41 T-cell responses.120,121 Ultimately, further knowledge of
clonotypes that are associated with disease and the epitopes recog-
nized by these clonotypes can be used to inform diagnostics based
on public clonotypes or epitopes as well as personalized therapies
based on a given patient’s antigen-specific repertoire.

Further advances in bioinformatic analysis of scRNA-seq
data have the potential to enhance the ability of scRNA-seq to
inform clinical applications. Specifically, the development of
novel methodologies to generalize results obtained with
scRNA-seq to bulk-based sequencing assays may improve the
translation of these discoveries to a clinical setting, as bulk
sequencing data can be collected from a large number of
patients more easily. These methodologies may include
methods for the deconvolution of bulk sequencing data, which
use scRNA-seq data to precisely define expression profiles
associated with single-cell phenotypes and then use these
expression profiles to estimate the cell-type composition of a
bulk sample.122,123 In addition, paired TCR-a/b data collected
with scRNA-seq can be used to nominate chain pairings for clo-
notypes in bulk TCR-b sequencing data sets. For example,
paired TCR-a/b data generated with scRNA-seq have been
used to nominate TCR-a pairings for public peanut-reactive
TCR-b sequences detected by using bulk sequencing of TCR-
b.63 These methodologies enable scRNA-seq to be utilized to
maximize the biologic insight available from lower resolution
but more clinically feasible assays.
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