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Expansion of tumor-reactive CD8+ T cell clonotypes 
occurs in the spleen in response to immune 
checkpoint blockade
Duncan M. Morgan1,2†, Brendan L. Horton2†‡, Vidit Bhandarkar2,3†, Richard Van2,3,  
Teresa Dinter2,3, Maria Zagorulya2,3, J. Christopher Love1,2, Stefani Spranger2,3*

Immune checkpoint blockade (ICB) enhances T cell responses against cancer, leading to long-term survival in a frac-
tion of patients. CD8+ T cell differentiation in response to chronic antigen stimulation is highly complex, and it remains 
unclear precisely which T cell differentiation states at which anatomic sites are critical for the response to ICB. We 
identified an intermediate-exhausted population in the white pulp of the spleen that underwent substantial expan-
sion in response to ICB and gave rise to tumor-infiltrating clonotypes. Increased systemic antigen redirected differen-
tiation of this population toward a more circulatory exhausted KLR state, whereas a lack of cross-presented tumor 
antigen reduced its differentiation in the spleen. An analogous population of exhausted KLR CD8+ T cells in human 
blood samples exhibited diminished tumor-trafficking ability. Collectively, our data demonstrate the critical role of 
antigen density within the spleen for the differentiation and expansion of T cell clonotypes in response to ICB.

INTRODUCTION
Immune checkpoint blockade (ICB) using antagonist antibodies 
targeting CTLA-4 or PD-1/PD-L1 can provide durable responses 
against cancer for a subset of patients (1). Understanding the 
mechanisms of response to ICB could improve the selection of pa-
tients and the development of new therapies. Most evidence sug-
gests that ICB enhances the functionality of tumor-reactive CD8+ 
T cells (2–4). An antitumor CD8+ T cell response is a sequential, 
multistep process involving the coordination of a variety of cell 
types across multiple anatomic locations (5). This process initiates 
with the priming of naïve CD8+ T cells by dendritic cells (DCs) in 
the tumor-draining lymph node (TdLN) (6, 7). Tumor-reactive 
CD8+ T cells then undergo clonal expansion and differentiate into 
T cells with effector functions (8, 9), followed by migration to the 
tumor, where they eliminate tumor cells (10). Tumors use immune-
suppressive mechanisms to avoid engagement from cytotoxic T cells 
(11), including chronic expression of tumor antigens, which in-
duces exhaustion among tumor-reactive CD8+ T cells (12, 13). 
Exhausted CD8+ T cells express elevated levels of inhibitory check-
point receptors that reduce T cell functionality (14). Blocking these 
receptors with ICB can increase T cell responsiveness to other co-
stimulatory signals (14, 15), promote clonal expansion of function-
al CD8+ effector T cells (16), and enhance migration of CD8+ 
effector T cells to the tumor, reinvigorating the antitumor im-
mune response.

Recent studies have demonstrated that T cell exhaustion repre-
sents a distinct trajectory of differentiation (17–21). An exhausted 
CD8+ T cell response comprises heterogenous differentiation 
states, including TCF-1+ “stem-like” progenitor-exhausted T cells 
(17–21), which exhibit an enhanced ability to respond to ICB (22, 

23). TCF-1+ CD8+ T cells are critical for ICB responses, but the 
anatomic locations from which these ICB-responsive CD8+ T 
cells emerge are unclear (24–28). TdLNs and tumors have been 
proposed as sites that maintain ICB-responsive CD8+ T cell popu-
lations (24–28), but peripheral expansion also appears critical for 
generating reinvigorated tumor-infiltrating CD8+ T cells (29–
31). Transcriptional analyses of lymphocytic choriomeningitis 
virus (LCMV)–specific CD8+ T cells have highlighted addition-
al transcriptional states associated with exhaustion, including 
intermediate-exhausted populations (32, 33). Nonetheless, the 
precise transcriptional states of T cells providing tumor control 
in response to ICB and the anatomic locations from which re-
sponses to ICB emerge remain unclear.

Using paired single-cell RNA (scRNA) and T cell receptor 
(TCR) sequencing, we profiled endogenous, tumor-reactive T cells 
isolated from tumors, TdLNs, and spleens of mice treated with 
ICB. We found that the spleen was a critical anatomic site for coor-
dinating the differentiation of an intermediate-exhausted CD8+ T 
cell population into either a terminally exhausted phenotype, which 
comprised most tumor-infiltrating cells, or into an exhausted killer 
cell lectin-like receptor (KLR) phenotype that was rarely found in 
the tumor. Increasing systemic antigen enhanced the differentia-
tion of this splenic intermediate population toward the blood-
resident exhausted KLR phenotype, leading to reduced numbers of 
tumor-infiltrating T cells in untreated mice. The expansion and dif-
ferentiation of splenic intermediate-exhausted T cells in response 
to ICB was dependent on cross-presenting DCs. This suggests that 
differentiation of CD8+ T cells is affected by both tissue site and 
antigen level. Using human datasets, we observed the exhausted 
KLR transcriptional state in blood and determined that this differ-
entiation state displayed limited infiltration into tumors, despite 
clonal expansion. These results demonstrate that antigen-specific 
restimulation in the spleen is required for the expansion of 
tumor-infiltrating clonotypes in response to ICB and that increasing 
levels of systemic antigen perturb the differentiation of these clo-
notypes to favor the exhausted KLR state, thereby blunting tumor 
infiltration.
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RESULTS
Tumor-reactive CD8+ T cells accumulate in the spleen 
during ICB
To establish the impact of ICB on tumor growth, we inoculated mice 
subcutaneously with KP lung cancer cells and treated the mice with 
ICB (Fig. 1A). Consistent with our previous report (9), ICB delayed 
the growth of subcutaneous KP tumors (Fig. 1B). To track tumor-
reactive CD8+ T cells, we used a KP cell line engineered to express 
the model antigen SIY, which binds H2-Kb (KP.SIY). KP.SIY tumor 
growth was also delayed by ICB, with treated tumors displaying a 
reduced size at day 14 after implantation (fig. S1, A and B, and Fig. 1, 
C and D). At this time point, we observed an increase in the absolute 

number and frequency of SIY-reactive CD8+ T cells in the spleens of 
mice after ICB (Fig. 1, E to G, and fig. S1C). The specificity of the 
SIY-reactive tetramer was validated, and tetramer-positive cells 
were CD44+ (fig. S1, D to G). To assess the generalizability of our 
findings, we also profiled SIY-reactive CD8+ T cells isolated from 
TdLNs, spleens, and tumors from two additional tumor models, 
MC38.SIY and LL/2.SIY. Similar to the KP.SIY model, nearly all SIY-
reactive T cells were CD44+ (fig. S2, A and B), and we observed a 
strong accumulation of SIY-reactive T cells in the spleen after ICB 
(fig. S2, C to H).

We observed a similar expansion profile between splenic and 
blood-derived T cells (fig.  S2I and Fig.  1G), which could reflect 
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Fig. 1. Tumor-reactive CD8+ T cells accumulate in the white pulp of the spleens of ICB-treated mice. (A) ICB treatment scheme of mice bearing subcutaneous KP 
tumors. (B) KP flank tumor outgrowth; n = 6; P values calculated using two-way ANOVA. (C) ICB treatment scheme of mice bearing subcutaneous KP.SIY tumors. (D) Weight 
of day 14 KP.SIY tumors; n = 9; P values calculated with a Mann-Whitney U test. (E) Representative staining of SIY-reactive CD8+ T cells in TdLN, spleen, and tumor on day 
14. (F) Number of SIY-reactive CD8+ T cells in TdLN, spleen (white pulp), and tumor on day 14. Fold changes were calculated using the median value from each condition; 
n = 10; P values calculated with one-way ANOVA. (G) Percent of CD8+ T cells that are SIY-reactive in TdLN, spleen (white pulp), and tumor. Fold changes were calculated 
using the median value from each condition; n = 10; P values calculated with a Mann-Whitney U test. (H and I) Representative staining (H) and quantification (I) of the 
percentage of SIY-reactive CD8+ T cells in the white pulp (CD45-IV− fraction) of the spleen, n = 6. P values were calculated with a Mann-Whitney U test. NS, not significant.
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expanded splenic T cells reentering circulation or active expansion 
in the blood. To consider these possibilities, we distinguished 
CD8+ T cells in the white pulp and red pulp of the spleen by intra-
venously (IV) administered fluorescently labeled anti-CD45 anti-
body 3  min before euthanasia (fig.  S2, J and K). We observed a 
much greater expansion of SIY-reactive CD8+ T cells after ICB in 
the white pulp (CD45-IV−) (8.8×) compared with a more modest 
expansion in the red pulp (CD45-IV+) (4.4×) (fig. S2L). Moreover, 
we found that 73.2% of splenic SIY-reactive CD8+ T cells in control 
mice were located in the white pulp and that this fraction increased 
to 82.6% after ICB treatment (Fig.  1, H and I). This observation 
suggests that SIY-reactive CD8+ T cells preferentially expand in the 
white pulp of the spleen.

Transcriptional states present among tumor-reactive CD8+  
T cells comprise the full spectrum of T cell exhaustion
To determine the phenotypic and clonotypic features underlying the 
distinct expansion potential of SIY-reactive T cells in the white pulp of 
the spleen, we performed scRNA and TCR sequencing of endoge-
nous SIY-reactive T cells from the tumors, TdLNs, and white pulp of 
five untreated and five ICB-treated KP.SIY tumor–bearing mice 
(Fig. 2A) (34). After exclusion of naïve-like and low-quality single 
cells (fig. S3, A to F), we performed Uniform Manifold Approxima-
tion and Projection (UMAP) for dimensionality reduction and 
identified 10 distinct transcriptional states using unsupervised Lou-
vain clustering (Fig. 2, B and C).

To identify how these transcriptional states related to the trajec-
tory of T cell exhaustion, we generated gene expression signatures 
using two single-cell atlases of CD8+ T cell transcriptional pheno-
types in chronic LCMV infection (32, 33) and overlaid the pheno-
typic signatures onto our data (Fig. 2, D and E). In our data, we 
identified one cluster of precursor-exhausted T cells, one cluster of 
progenitor-exhausted T cells, two clusters of intermediate-exhausted 
T cells, two clusters of terminally exhausted T cells, one cluster of 
exhausted KLR T cells, one cluster that up-regulated transcripts as-
sociated with interferon response, and two clusters of proliferating 
T cells (Fig. 2, B and C). Consistent with these annotations, precur-
sor- and progenitor-exhausted T cells expressed high levels of the 
transcript Slamf6 (Fig. 2C). Precursor-exhausted T cells were highly 
proliferative, up-regulated transcripts associated with translation 
and protein synthesis, and down-regulated Btg1, whereas progenitor-
exhausted T cells expressed higher levels of the transcription fac-
tor Tcf7 (Fig. 2, C and F). Intermediate-exhausted T cells expressed 
elevated levels of transcripts associated with tissue homing (Ccr2, 
Cxcr6, and Itgax) and effector function (Gzma and Gzmb) and 
down-regulated Sell and Tcf7 (Fig.  2, C and G). Among the two 
states of intermediate-exhausted T cells, intermediate 2 T cells up-
regulated transcripts such as Itgae and Ccr10, suggesting that they 
might comprise precursors of tissue-resident memory T cells (35, 
36). Conversely, the intermediate 1 T cells up-regulated transcripts 
such as Itga4, Gzmk, and Eomes, consistent with tissue-homing ef-
fector T cells (fig. S3G). Terminally exhausted T cells up-regulated 
transcripts such as Lag3, Tnfrsf9, and Cd69 (Fig. 2, C and H). Among 
terminally exhausted T cells, exhausted 1 T cells expressed tran-
scripts associated with cytokine signaling (Ifngr1 and Il12rb2), 
whereas exhausted KLR T cells up-regulated transcripts encoding 
KLRs (Klrg1, Klrk1) as well as Cx3cr1 (fig. S3, H to J). Last, interferon-
responsive T cells up-regulated a variety of transcripts associated 
with interferon sensing (fig. S3K).

To annotate the remaining two states of proliferating T cells, we 
performed label transfer of cluster identities from nonproliferating 
to proliferating T cells (Fig.  2I). These results demonstrated that 
most proliferating T cells had transcriptional states consistent with 
either a Cxcr3+ intermediate 1 phenotype or a Slamf6+ progenitor-
exhausted phenotype. In sum, these results demonstrate that the 
transcriptional phenotypes present in this tumor model recapitulate 
the full spectrum of transcriptional phenotypes that have been ob-
served in models of chronic viral infection in mice (32, 33).

States of T cell exhaustion vary in frequency among the 
tumor, lymph node, and spleen
We next examined the frequency of each transcriptional phenotype 
among the recovered SIY-reactive CD8+ T cells from the tumor, 
TdLN, and white pulp (Fig. 3A and fig. S4A). In control and ICB-
treated mice, the TdLN was enriched in transcriptional states asso-
ciated with early stages of T cell exhaustion, including precursor T 
cells and progenitor T cells. In contrast, the white pulp contained 
elevated frequencies of intermediate-exhausted T cell states, and 
the tumor comprised T cells with terminally exhausted phenotypes. 
These data suggest that the TdLN, spleen, and tumor are populated 
by increasingly differentiated phenotypes of tumor-reactive CD8+ 
T cells, highlighting a spatially resolved trajectory of T cell dif-
ferentiation.

We also examined the impact of ICB treatment on the frequency 
of specific transcriptional states across all three tissues (Fig.  3B). 
ICB resulted in the expansion of intermediate 1 T cells, but not in-
termediate 2 T cells, in both the spleen and TdLN. Regardless of 
ICB treatment, T cells in tumors remained almost entirely within 
the exhausted 1 phenotype, whereas exhausted KLR T cells were 
found predominantly in the white pulp and were largely absent 
from any other anatomic locations.

We established a lymphoid tissue–specific gating strategy for 
flow cytometry to distinguish among progenitor, intermediate 1, 
and exhausted KLR T cells, which comprised most SIY-reactive 
CD8+ T cells in the white pulp and TdLN. Cxcr3 and Cx3cr1 tran-
scripts were differentially expressed among progenitor, intermediate 
1, and exhausted KLR T cell populations (fig.  S4, B and C, and 
Fig. 3C). Using flow cytometry, we confirmed the presence of a 
CXCR3+CX3CR1+ population, consistent with an intermediate 1 
phenotype, and a CXCR3−CX3CR1+ population, consistent with an 
exhausted KLR phenotype, in the white pulp of tumor-bearing mice 
(Fig. 3D). To validate that these protein markers identify T cells with 
intermediate 1 and exhausted KLR transcriptional phenotypes, we 
performed bulk RNA sequencing of sorted splenic CXCR3+CX3CR1+ 
and CXCR3−CX3CR1+ SIY-reactive T cells. We observed a high de-
gree of concordance among transcripts differentially expressed by 
these sorted populations and the intermediate 1 and exhausted KLR 
populations in our single-cell data (fig. S4, D to F), suggesting that 
CXCR3 and CX3CR1 can be used to distinguish between these two 
transcriptional phenotypes.

We next assessed the frequency of CXCR3+CX3CR1− progenitor T 
cells, CXCR3+CX3CR1+ intermediate 1 T cells, and CXCR3−CX3CR1+ 
exhausted KLR T cells in control and ICB-treated mice. Consistent 
with our scRNA sequencing (scRNA-seq) results, we observed an in-
crease in the frequency and number of CXCR3+CX3CR1+ intermedi-
ate 1 T cells in both the TdLN and white pulp after ICB treatment 
(Fig. 3E and fig. S5, A and B). The frequency of CXCR3+CX3CR1+ 
intermediate 1 T cells was highest in the white pulp, both in 
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Fig. 2. Single-cell, multitissue transcriptional atlas of SIY-reactive CD8+ T cells. (A) UMAP of SIY-reactive CD8+ T cells from untreated or ICB-treated KP tumor–bearing 
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Fig. 3. Distribution of transcriptional states between TdLN, white pulp, and tumor. (A) Frequency of exhausted states in each tissue. (B) Frequency of transcriptional 
states associated with exhaustion in control and ICB-treated mice. P values were calculated using a two-sided Wilcoxon rank sum test and adjusted using Bonferroni cor-
rection. (C) Heatmap of normalized Cxcr3 and Cx3cr1 expression by progenitor, intermediate 1, and exhausted KLR T cells. Each box is the average expression in one 
mouse. (D) Representative flow cytometry plots of CXCR3 and CX3CR1 expression by SIY-reactive T cells in TdLN, white pulp (spleen), and tumor. (E) Quantification of 
CXCR3+CX3CR1+ SIY–reactive CD8+ T cells in TdLN, white pulp (spleen), and tumor. (F) Frequency of TCF-1 expression by CXCR3+CX3CR1+ SIY–reactive CD8+ T cells in the 
TdLN and spleen. (G) Frequency of CXCR3+CX3CR1+ cells among TCF-1+ SIY–reactive CD8+ T cells. For (E) to (G), n = 6, and P values were calculated with one-way ANOVA.

D
ow

nloaded from
 https://w

w
w

.science.org at H
um

boldt-U
niversitaet B

erlin (w
ith C

harit) on Septem
ber 13, 2024



Morgan et al., Sci. Immunol. 9, eadi3487 (2024)     13 September 2024

S c i e n c e  Imm   u n o l o g y  |  R e s e a r c h  Ar  t i c l e

6 of 18

pretreatment and post-ICB conditions (Fig.  3E). These results were 
validated in MC38.SIY and LL/2.SIY tumor models (fig. S5C). Analysis 
of T cells in the white pulp or the blood-accessible red pulp revealed 
that the expansion of intermediate 1 CXCR3+CX3CR1+ T cells oc-
curred predominantly within the white pulp (fig. S5, D to F). This was 
further supported by the result that the frequency of intermediate 1 T 
cells did not increase in the blood after ICB (fig. S5E). Together, these 
data identify the white pulp as a critical anatomical site for the expan-
sion of intermediate 1 CD8+ T cells upon ICB.

Several reports have demonstrated the importance of TCF-1 expres-
sion for CD8+ T cells to respond to ICB (2, 19, 22–24, 27). We examined 
the expression of TCF-1 among progenitor CXCR3+CX3CR1−, inter-
mediate 1 CXCR3+CX3CR1+, and exhausted KLR CXCR3−CX3CR1+ 
T cell populations. Progenitor T cells expressed the highest levels of 
TCF-1 in both the TdLN and white pulp (fig. S6, A and B). In the white 
pulp, progressive differentiation into intermediate 1 and exhausted KLR 
T cells correlated with a gradual decrease in TCF-1 expression (fig. S6, 
A and B). Consistent with previous reports (19, 22, 23), the frequency of 
TCF-1+ T cells among all three of these T cell subsets decreased in re-
sponse to ICB, suggesting enhanced T cell differentiation in response to 
ICB (Fig. 3F and fig. S6, A and B). In addition, in both the TdLN and 
white pulp, progenitor T cells comprised most TCF-1+ SIY–reactive T 
cells (fig. S6, C and D). The frequency of intermediate 1 T cells among 
TCF-1+ SIY–reactive T cells remained unchanged in the TdLN after 
ICB (fig. S6, C and D). In contrast, in the white pulp, the fraction of in-
termediate 1 T cells among TCF-1+–expressing SIY-reactive T cells in-
creased after ICB, supporting that the expansion of this population 
constitutes a critical component of the T cell response elicited by ICB 
(Fig. 3G and fig. S6, C and D).

In addition, we assessed the expression of GZMB, PD-1, and TIM-
3 across these T cell populations. Intermediate 1 CXCR3+CX3CR1+ T 
cells expressed the highest level of GZMB, suggesting that these cells 
exhibit enhanced cytotoxic capacity (fig. S7, A and B). In the TdLN, 
progenitor CXCR3+CX3CR1− and intermediate 1 CXCR3+CX3CR1+ 
T cells displayed similar frequencies of TIM-3 and PD-1 expression 
(fig. S7, C to F). However, in the white pulp, the frequency of TIM-3 
expression was highest among intermediate 1 CXCR3+CX3CR1+ T 
cells, whereas the frequency of PD-1 expression was reduced in ex-
hausted KLR CXCR3−CX3CR1+ T cells (fig.  S7, C to F). Together, 
these results indicate that the frequency of distinct transcriptional 
states associated with the progression of T cell exhaustion varies 
among the tumor, TdLN, and spleen. Moreover, treatment with ICB 
selectively expands CD8+ T cells with an intermediate 1 phenotype 
that express elevated levels of effector molecules in both the white pulp 
and TdLN.

CXCR3+CX3CR1+ intermediate-exhausted T cells give rise to 
clonally distinct exhausted 1 or exhausted KLR T 
cell phenotypes
To gain insights into the relationships among the expanded T cell 
clusters, we next examined the TCR repertoire of SIY-reactive T 
cells (Fig. 4A). In untreated mice, we observed the largest levels of 
clonal expansion in the white pulp, whereas in mice treated with 
ICB, the magnitudes of clonal expansion observed were similar 
among the tumor, TdLN, and white pulp (Fig. 4B). Consistent with 
this observation, TCR repertoire diversity decreased after ICB treat-
ment, indicating that ICB promotes strong expansion of a subset of 
tumor-reactive clonotypes (Fig. 4C). We also observed a greater 
clonal richness (i.e., total number of SIY-reactive clonotypes), 

demonstrating that ICB treatment simultaneously enables mainte-
nance of a larger repertoire of tumor-reactive T cells (Fig. 4D).

We next sought to define a hierarchy underlying the path of dif-
ferentiation of tumor-reactive clonotypes. We considered a clono-
type representative of a phenotype if at least two T cells from that 
clonotype were found in any given phenotype. On the basis of this 
definition, we constructed a heatmap of the representative pheno-
types present within individual TCR clonotypes (Fig. 4E). We then 
computed a transition matrix using the geometric mean overlap of 
clonotypes between each pair of phenotypes (Fig.  4F). We found 
that the repertoire of progenitor clonotypes shared substantial over-
lap with the repertoire of precursor clonotypes, consistent with pre-
cursor T cells undergoing differentiation to progenitor T cells. 
Likewise, intermediate 1 clonotypes exhibited the greatest clonal 
overlap with progenitor clonotypes, suggesting that intermediate 1 
T cells differentiate from progenitor T cells. Both the exhausted 1 
and exhausted KLR clonotypes demonstrated the greatest clonal 
overlap with intermediate 1 clonotypes, suggesting that most ex-
hausted 1 and exhausted KLR T cells differentiate from intermediate 
1 T cells. The level of clonal overlap between exhausted 1 and ex-
hausted KLR phenotypes was minimal, suggesting that they repre-
sent distinct, noninterconvertible T cell states. Consistent with this 
analysis, upset plots depicting the patterns of phenotypic variation 
within clonotypes demonstrated that the most common pairs of 
phenotypes identified within a single clonotype were progenitor–in-
termediate 1, intermediate 1–exhausted 1, progenitor–intermediate 
2, intermediate 1–exhausted KLR, and intermediate 1–intermediate 
2 (fig. S8A). Thus, we developed a model in which precursor T cells 
differentiate into progenitor T cells that in turn give rise to interme-
diate 1 and intermediate 2 T cells. Intermediate 1 T cells can bifur-
cate to either exhausted 1 T cells or exhausted KLR T cells (Fig. 4G). 
This model demonstrates high levels of concordance with recent 
studies of chronic viral infection in mice (32, 33), which include an 
intermediate phenotype preceding divergent exhausted phenotypes.

Tumor-specific T cell differentiation is associated with 
tissue-site trafficking
We next assessed the relationship between the differentiation of 
individual clonotypes and their tissue location. We found a robust 
correlation between the frequencies of individual clonotypes 
among the tumor, TdLN, and spleen, indicating that these tissues 
are populated by a common pool of SIY-reactive, tumor-specific 
clonotypes (Fig. 5A). Using the constructed heatmap (Fig. 4E), we 
identified the two most common phenotypes encountered within 
each clonotype, allowing us to classify clonotypes as either belong-
ing to only a single phenotype or transitioning from one phenotype 
to another (Fig. 4E). Clonotypes in which we could not unambigu-
ously assign to one or two dominant phenotypes were excluded 
from this analysis. Comparing the clonal sizes and phenotypes 
present at each tissue site within transitioning clonotypes, we found 
that clonotypes differentiating from the progenitor state to inter-
mediate 1 were strongly polarized toward the progenitor pheno-
type in the TdLN but were polarized toward the intermediate 1 
phenotype in the white pulp, suggesting that transition between 
these two transcriptional states is strongly associated with the mi-
gration of T cells from the TdLN to the spleen (Fig. 5B and fig. S8B). 
Likewise, the transition between the intermediate 1 and exhausted 
1 phenotypes was strongly associated with trafficking from the 
white pulp to the tumor (Fig. 5C). In contrast, although a small 
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number of cells from clonotypes undergoing differentiation from 
intermediate 1 to exhausted KLR states demonstrated an interme-
diate 1 phenotype in the TdLN, most of these clonotypes were ab-
sent from both the TdLN and the tumor but present in the white 
pulp, indicating that these transitions primarily occur within the 
spleen (Fig.  5D and fig.  S8C). Overall, these results demonstrate 
that clonally related T cells have distinct phenotypes in different 
tissues and that select phenotypic transitions, including progenitor 
to intermediate 1 and intermediate 1 to exhausted 1, are strongly 
associated with trafficking from one tissue to another, whereas oth-
ers, such as intermediate 1 to exhausted KLR, are not accompanied 
with a change in tissue site and instead take place primarily among 
cells resident in the spleen.

The intermediate 1–to–exhausted 1 transition limits clonal 
differentiation and is overcome by ICB
To determine how ICB modulates the phenotypic transitions expe-
rienced by SIY-reactive clonotypes, we examined the distribution of 
clonal behaviors present in control and ICB-treated mice. Although 
the frequency of clonotypes classified as transitioning between in-
termediate 1 and exhausted 1 was similar (fig. S8D), the fraction of 
T cells belonging to an intermediate 1 ➔ exhausted 1–transitioning 
clonotype was substantially greater in mice treated with ICB 
(Fig. 5E). We then calculated the absolute clonal sizes of individual 
clonotypes in control and ICB-treated mice undergoing the clonal 
transitions analyzed above. We also found that the clonal sizes 
of intermediate 1 ➔ exhausted 1 clonotypes, but no other transitioning 
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clonotypes, were significantly larger in mice treated with ICB, sug-
gesting that ICB preferentially expands intermediate 1 clonotypes 
that are primed to undergo an intermediate 1–to–exhausted 1 tran-
sition (Fig. 5F).

We also computed the clonal richness of each phenotype en-
countered on our hypothesized differentiation trajectory (Fig. 5G). 
We found that clonal richness peaked at the progenitor and inter-
mediate 1 phenotype, suggesting that precursor T cells, the appar-
ent direct precursors of progenitor T cells, are largely depleted by 
day 14 after tumor inoculation. In addition, this result demonstrates 
that there is an accumulation of clonotypes at the progenitor and 
intermediate 1 phenotype. These data suggest that although the 
transition from progenitor to intermediate 1 phenotype is efficient, 
occurring with high probability, the transition from intermediate 1 
to an exhausted 1 phenotype is inefficient and that the intermediate 
1 phenotype is a rate-limiting step encountered during clonal dif-
ferentiation. Thus, we concluded that one of the major results of 
ICB treatment is the expansion of splenic intermediate 1 clonotypes 
that are predisposed to undergo the intermediate 1–to–exhausted 1 
transition.

Splenic intermediate 1 T cells drive the expansion of 
tumor-reactive CD8+ T cells during ICB
To confirm that the ability of tumor-reactive CD8+ T cells to ex-
pand in response to ICB was different between T cells from the 
TdLN and white pulp, we performed an adoptive transfer of TCR-
transgenic in vivo–activated 2C T cells into KP.SIY tumor–bearing 
mice (Fig.  6A). In this system, expanded 2C T cells appear with 
comparable frequency and number in both the TdLNs and white 
pulp of mice within 72 hours after transfer (Fig. 6, B and C, and 
fig.  S9, A and B) and transcriptionally mirror endogenous SIY-
reactive T cells (8, 9). CellTrace violet dilution studies of labeled 2C 
T cells 72 hours after transfer showed that 2C T cells undergo four 
to six cell divisions in the TdLN, whereas they undergo eight or 
more divisions in the white pulp (Fig. 6, D and E), confirming that 
priming takes place in the TdLN, followed by splenic trafficking.

We next investigated the phenotypes of transferred 2C T cells in 
TdLNs and white pulp of recipient mice. Consistent with our previ-
ous data, more 2C T cells in the white pulp displayed an intermedi-
ate 1 CXCR3+CX3CR1+ phenotype compared with 2C T cells in 
the TdLN (Fig. 6, F and G, and fig. S9C). This observation supports 
that differentiation from a progenitor to intermediate 1 T cell state 
is associated with trafficking to the spleen. Further, progenitor 
CXCR3+CX3CR1− and intermediate 1 CXCR3+CX3CR1+ T cells 
in the white pulp expressed similar levels of PD-1, whereas inter-
mediate 1 T cells exhibited reduced SLAMF6 expression, a proxy 
for TCF-1 (19), aligning with our prior findings on endogenous 
SIY-reactive CD8+ T cells (figs. S9, D and E, S6B, and S7F). Overall, 
these data support a model in which transferred 2C T cells initially 
proliferate in the TdLN before trafficking to the white pulp of the 
spleen, where they undergo additional cycles of proliferation and 
acquire a more differentiated CXCR3+CX3CR1+ intermediate 1 T 
cell phenotype.

We next used a serial adoptive transfer approach to determine 
whether splenic 2C T cells exhibited enhanced responsiveness to 
ICB. We sorted 2C T cells from TdLNs and white pulp of primary 
recipient mice and transferred the sorted 2C T cells to secondary 
recipients with time-matched KP.SIY tumors (Fig. 6H). Only 2C T 
cells sorted from the white pulp of mice significantly expanded in 

response to ICB (Fig. 6I and fig. S10, A and B). Further, GZMB ex-
pression by 2C T cells in the tumor was up-regulated after ICB treat-
ment (fig. S10C). These data indicate that splenic T cells, which are 
enriched for the intermediate 1 phenotype, are the primary re-
sponders to ICB and can recirculate to both TdLNs and tumors.

Antigen density regulates intermediate 1 T cell 
differentiation and trafficking
We sought to further understand the regulators of tumor-reactive 
CD8+ T cell differentiation in the spleen. Chronic antigen stimula-
tion is known to drive T cells into terminal exhaustion states (12, 
13). Consistently, SIY-reactive CD8+ T cells infiltrating the tumor 
almost completely comprised an exhausted 1 phenotype. Progenitor-
exhausted CD8+ T cells are also induced by high antigen levels in 
the lymph node (17), but how antigen affects differentiation of T 
cells into the intermediate 1 phenotype is unknown. To examine the 
extent of antigen trafficking to the spleen, we inoculated mice with KP 
cells that expressed the pH-stable fluorophore ZsGreen (KP.ZsGreen) 
and examined the levels of ZsGreen in CD45+ cells in TdLNs and 
spleens. TdLNs had a significantly higher frequency of ZsGreen+CD45+ 
cells compared with spleens, indicating that the spleen was a rela-
tively antigen-low anatomic site (fig. S11, A and B). Using the 2C T 
cell adoptive transfer approach, we then determined whether anti-
gen was required to drive tumor-reactive CD8+ T cell expansion in 
the spleen. We primed 2C T cells in vivo in primary KP.SIY tumor–
bearing host mice before transferring 2C T cells isolated from the 
white pulp into secondary hosts bearing either KP.SIY or KP tu-
mors. Secondary hosts were treated with ICB (Fig. 7A). 2C T cells 
failed to accumulate in secondary hosts bearing KP tumors, indicat-
ing that antigen was required, even at low levels, for 2C T cell expan-
sion in response to ICB (Fig. 7B and fig. S11, C and D).

On the basis of these results, we aimed to determine whether T 
cell expansion in the spleen is dependent on DC-mediated antigen 
presentation. Previous work has shown that cross-presenting DCs 
(DC1s), driven by the transcription factor Batf3, are the dominant 
DC subset that prime CD8+ T cells in TdLNs (8, 37). Further, we 
observed that splenic DC1s are exclusively present in the white pulp 
(fig. S12, A to C). Thus, we compared the expansion of adoptively 
transferred 2C T cells in Batf3−/− hosts with wild-type hosts after 
ICB therapy (Fig. 7C). Consistent with prior studies, we observed 
poor infiltration into the tumor and a reduced expansion of 2C T 
cells in the TdLNs of Batf3−/− hosts (Fig. 7D and fig. S12, D and E) 
(38–40). We also observed a fivefold reduction in the expansion of 
SIY-reactive T cells in the spleens of Batf3−/− mice (Fig. 7D and 
fig.  S12, D and E). Further, Batf3−/− mice had a reduction in the 
proportion of 2C T cells with an intermediate 1 CXCR3+CX3CR1+ 
phenotype in the white pulp, whereas the less differentiated progen-
itor CXCR3+CX3CR1− T cell state was enriched (fig. S12, F and G).

Next, we aimed to specifically address whether levels of systemic 
antigen affect the expansion of antigen-reactive intermediate 1 T 
cells in the spleen. To directly test this, we isolated splenocytes from 
naïve mice, pulsed them with SIY, and transferred them into KP.SIY 
tumor–bearing mice, which were subsequently treated with ICB 
(Fig. 7E). This approach systemically increases cell-associated anti-
gen and enhances cross-presentation, including in the spleen (41, 
42). On day 14 after tumor inoculation, we observed accelerated dif-
ferentiation of tumor-reactive T cells, as evidenced by the decrease 
in progenitor CXCR3+CX3CR1− T cells in the white pulp, and to 
a lesser degree in the TdLNs, of mice that received SIY-pulsed 
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splenocytes (fig. S12, H and I). Elevated levels of systemic antigen 
increased the proportion of intermediate 1 CXCR3+CX3CR1+ T 
cells in untreated mice but not in ICB-treated animals and abrogat-
ed the previously observed expansion of intermediate 1 T cells in 
mice that received ICB (Fig. 7, F and G). In addition and indepen-
dently of ICB therapy, systemic antigen resulted in an increased fre-
quency of exhausted KLR CXCR3−CX3CR1+ T cells in the white 

pulp (Fig. 7, F to H) accompanied by lower expression of CXCR3 
and higher expression of CX3CR1 on intermediate 1 T cells (Fig. 7, 
I and J). Together, these results suggest that intermediate 1 T cells in 
the white pulp undergo accelerated differentiation to the exhausted 
KLR phenotype in response to increased levels of systemic antigen. 
This biased T cell differentiation toward exhausted KLR T cells in 
the white pulp in response to SIY-pulsed splenocytes was associated 
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with a significant reduction in tumor-infiltrating SIY-reactive CD8+ 
T cells in untreated mice but not in mice treated with ICB therapy 
(Fig. 7, K and L). Increasing systemic antigen did not influence the 
viability of tumor-infiltrating SIY-reactive CD8+ T cells (fig. S12, J 
and K). This is consistent with our previous observation that ex-
hausted KLR T cells reside primarily in the spleen and do not traffic 
to tumors (Fig. 3B). The observation that ICB therapy was able to 
rescue T cell infiltration into the tumor suggests that the remaining 
fraction of intermediate 1 T cells in SIY-pulsed mice can differenti-
ate into sufficient numbers of tumor-trafficking, exhausted 1 T cells 
upon ICB, resulting in some degree of tumor control (fig. S12L). In 
sum, these results suggest that low but detectable levels of cross-
presented antigen in the white pulp are critical for the accumulation 
and retention of splenic T cells in the intermediate 1 state and that 
perturbation of splenic intermediate 1 T cells can affect migration of 
T cells to the tumor.

Exhausted KLR T cells in human patients exhibit reduced 
migration to tumors relative to other 
tumor-homing clonotypes
To assess the extent to which the transcriptional phenotypes and 
clonotypic trends observed among SIY-reactive T cells in our mouse 
model are present in human patients, we conducted a reanalysis of a 
pan-cancer atlas of tumor-infiltrating lymphocytes recovered from 
316 patients with cancer (43). We focused this analysis on a subset 
of the larger atlas, comprising four types of solid tumors (colorectal 
carcinoma, hepatocellular carcinoma, non–small cell lung cancer, 
and cholangiocarcinoma) for which scRNA and TCR sequencing 
data from matched tumor tissue and peripheral blood were avail-
able. On the basis of transcriptional expression, the authors anno-
tated most CD8+ T cells as naïve (Tn), memory (Tm), resident 
memory (Trm), effector memory (Tem), exhausted (Tex), termi-
nally differentiated memory or effector cells (Temra), natural killer 
(NK)–like (Tk), or interferon-stimulated gene (ISG)–positive.

We first examined the concordance between SIY-reactive tran-
scriptional phenotypes identified in our mouse model and the 
transcriptional phenotypes present among tumor-infiltrating lym-
phocytes from human patients. We found strong agreement be-
tween the signatures identified in our mouse model and the 
phenotypes annotated by Zheng et al.: Specifically, Tn expressed 
strong levels of our progenitor signature; Tm, Trm, and Tem up-
regulated our intermediate 1 signature, with a subset of Trm also 
up-regulating our intermediate 2 signature; Tex up-regulated our 
exhausted 1 and exhausted 2 signatures; and Temra up-regulated 
our exhausted KLR signature (Fig. 8, A and C, and fig. S13). Thus, 
the transcriptional states present in our mouse model can differen-
tiate phenotypes of T cells present in the tumors and peripheral 
blood of human patients, with Temra being the analogous counter-
part of the exhausted KLR cells. Next, we analyzed T cells in the 
peripheral blood that were clonally related to tumor-infiltrating 
clonotypes. Temra cells in the peripheral blood were the only pop-
ulation increased in frequency among tumor-trafficking clono-
types relative to non–tumor-trafficking clonotypes, suggesting that 
this population in peripheral blood is enriched for tumor-specific 
CD8+ T cells (Fig. 8D). The tumor-infiltrating clonal relatives of 
Temra cells from the peripheral blood were also enriched for a 
Temra phenotype relative to other tumor-infiltrating clonotypes 
found in peripheral blood, suggesting that this phenotype is con-
served upon entry into the tumor (Fig. 8E).

To determine whether trafficking of T cells into the tumor was 
associated with any specific T cell state, we assessed the fraction of T 
cells within each state between tumor and peripheral tissues. Strik-
ingly, among tumor-trafficking clonotypes, the Temra phenotype 
was substantially decreased in frequency in the tumor relative to 
peripheral blood, suggesting poor tumor infiltration (Fig.  8F). In 
contrast, Trm, Tem, and ISG cells exhibited an increase in frequency 
in the tumor, suggesting that these populations undergo efficient re-
cruitment to the tumor. To assess whether these trends in tumor 
trafficking potential were apparent at the level of individual clono-
types, we computed the ratio between the frequency of each clono-
type in the tumor and the blood. Relative to other clonotypes in the 
peripheral blood, Temra clonotypes were substantially more ex-
panded in peripheral blood compared with the tumor, indicating 
that individual Temra clonotypes exhibit a reduced ability to enter 
the tumor relative to other phenotypes in the peripheral blood 
(Fig. 8G). Considering this observation in human tumors, we revis-
ited our analysis of exhausted KLR T cells in the blood and observed 
an increase in frequency of exhausted KLR T cells in the blood of 
both control and ICB-treated mice, with only a modest expansion in 
the white and red pulp of the spleen after ICB (Fig. 8H). These data 
are consistent with the finding that the human analog of the ex-
hausted KLR T cell population resides primarily in the blood but 
not cancerous tissue (Fig. 8H). Overall, these data support our mod-
el in which intermediate 1–like T cells (Tm, Trm, and Tem) undergo 
efficient entry into the tumor from lymphoid tissues, whereas ex-
hausted KLR-like clonotypes (Temra) exhibit a decreased potential 
to migrate to the tumor, especially considering their relative level of 
clonal expansion within peripheral blood.

DISCUSSION
Here, we analyzed tumor-reactive CD8+ T cells from tumors, TdLNs, 
and white pulp of ICB-treated and untreated mice with scRNA-seq 
and TCR sequencing. Our findings corroborate previous reports on 
the step-wise differentiation along distinct transcriptional pheno-
types (32, 33) and demonstrate that these transcriptional states ap-
pear largely restricted to individual anatomic sites. We observed that 
the intermediate 1 T cell population is enriched in the white pulp of 
the spleen and gives rise to two terminally differentiated populations 
of CD8+ T cells: exhausted 1, which is largely restricted to the tumor, 
and exhausted KLR, which is enriched in the blood of mice and hu-
mans. Whereas increasing systemic antigen promoted the differ-
entiation of intermediate 1 to the exhausted KLR T cell state, the 
absence of antigen or cross-presenting DCs reduced differentiation 
of intermediate 1 T cells in the white pulp, suggesting that some 
level of antigen on DCs is necessary to sustain T cells in the interme-
diate 1 phenotype. Together, our results demonstrate that microen-
vironmental factors present in individual anatomic sites play a role 
in guiding exhausted T cell differentiation and are critical in deter-
mining the outcome of ICB.

The spleen is frequently analyzed in models of chronic viral infec-
tion including LCMV, but in these models, the spleen is also a pri-
mary site of infection. In contrast, the spleen is rarely studied in the 
context of cancer (19, 22–24, 26, 27). We found that splenic intermediate 
1 T cells exhibit the greatest expansion in response to ICB. Consistent 
with this result, a recent study proposed that intermediate-exhausted 
T cells are most expanded by anti–PD-L1 treatment in murine LCMV 
infection (32). We found that a subset of intermediate 1 T cells retains 
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Fig. 8. Exhausted KLR cells in human patients exhibit decreased migration from peripheral blood to tumor. (A to C) Expression of signatures for intermediate 1, 
exhausted 1, and exhausted KLR phenotypes on clusters defined by Zheng et al. (43). Boxes show IQR with 1.5× IQR whiskers. (D) Frequency of phenotypes present in 
peripheral blood among tumor-trafficking and non–tumor-trafficking clonotypes. P values were calculated with a two-sided Wilcoxon rank sum test and adjusted with 
Bonferroni correction. (E) Frequency of phenotypes present among tumor-infiltrating T cells related to Temra clonotypes from peripheral blood and all other tumor-
infiltrating clonotypes. P values were calculated with a two-sided Wilcoxon rank sum test and adjusted with Bonferroni correction. (F) Frequency of phenotypes present 
among tumor-trafficking CD8+ T cells in blood and tumor. P values were calculated with a two-sided Wilcoxon rank sum test and adjusted with Bonferroni correction. 
(G) Ratio of clonal frequency in tissue to clonal frequency among Tm, Trm, Tem, Temra, and all other clonotypes. P values were calculated by a Kruskal-Wallis rank sum test 
followed by Dunn’s posttest. Boxes show IQR with 1.5× IQR whiskers. (H) Frequency of endogenous CXCR3−CX3CR1+ exhausted KLR SIY-reactive CD8+ T cells from the 
white pulp, red pulp, and blood of day 14 KP.SIY tumor–bearing mice; n = 11; P values calculated with one-way ANOVA.
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TCF-1 expression, consistent with previous reports identifying TCF-
1+ CD8+ T cells as the mediators of T cell self-renewal and expansion 
in response to ICB (2, 19, 22–24, 27). Moreover, the proportion of 
intermediate 1 T cells within the TCF-1+ splenic SIY-reactive T cell 
population strongly increased after ICB, reinforcing the idea that the 
expansion of this subset plays a crucial role in the T cell response in-
duced by ICB.

Intermediate 1 T cells also bear some resemblance to a popula-
tion of “transitory” proliferating cells reported to express CX3CR1 
(22, 44). These studies have suggested that these transitory T cells 
are derived directly from CXCR5+ progenitor T cells; our data sug-
gest that most ICB-triggered expansion can be attributed to cells 
undergoing transitions from intermediate 1 to exhausted 1. A re-
ported population of CXCR5+ CD8+ progenitor exhausted T cells, 
which proliferated after PD-L1 blockade, also express CXCR3 and 
bear strong similarities to intermediate 1 T cells (23). It may be that 
in cancer, the intermediate 1 population combines aspects of pro-
genitor and transitory T cells found in chronic LCMV infection. 
Intermediate 1 T cells therefore likely have a greater role in the re-
sponse to ICB than previously appreciated, especially in cancer. We 
propose that these patterns of tissue-restricted antigen presence 
may encourage important yet transient antigen encounter in in-
fected or tumor tissue and their draining lymph nodes, followed by 
low-density antigen encounter in the spleen. Our work highlights 
the crucial role of cross-presentation by DC1s in facilitating opti-
mal T cell differentiation, even in scenarios of low antigen density. 
This pattern of antigen encounter may represent a key component 
of the antitumor immune response that is not well-modeled by 
chronic LCMV infection, which results in high antigen levels in 
the spleen.

Similar to previous studies (32, 33), we found that the intermedi-
ate 1 population served as a hub for differentiation into multiple 
phenotypic states, including exhausted 1 and exhausted KLR T cells. 
Of these phenotypes, only exhausted 1 cells exhibited efficient traf-
ficking to the tumor, suggesting that state decisions made at this 
bottleneck substantially affect the effectiveness of an antitumor T 
cell response. These two T cell states also exhibited minimal clonal 
overlap, suggesting that they represent divergent fates and raising 
the possibility that TCR signaling characteristics may influence fate 
decisions. Prior studies have demonstrated that higher TCR affinity 
promotes differentiation into a terminally exhausted phenotype 
rather than a phenotype resembling exhausted KLR (33). Future 
studies could seek to understand factors that regulate the fate com-
mitment of intermediate 1 T cells and assess to what extent these 
transitions may be reversible. Understanding how to effectively tar-
get and manipulate the intermediate 1 to exhausted 1 fate decision 
may offer new strategies to increase the tumor-infiltrating abilities 
of T cells and enhance the efficacy of ICB.

By examining the relationships between anatomic sites and tran-
scriptional phenotypes within individual clonotypes, we observed 
that some phenotypic transitions, including progenitor ➔ interme-
diate 1 and intermediate 1 ➔ exhausted 1, are strongly associated 
with transit between different tissues. We are unable to conclude 
whether entry into different tissues is a key factor promoting differ-
entiation or whether differentiation itself promotes transit to differ-
ent tissue sites. One previous study found, however, that full effector 
differentiation of progenitor T cells requires entry into the tumor, 
suggesting that T cell state transitions can result from trafficking to 
new anatomic locations (45).

In contrast with intermediate 1 T cells, our results indicate that 
mouse and human CX3CR1hi CD8+ T cells, including exhausted 
KLR and Temra T cells, respectively, do not traffic efficiently to the 
tumor. This result is consistent with previous findings where CX-
3CR1hi memory CD8+ T cells were preferentially found in blood, 
whereas CXCR3+CX3CR1int memory T cells, which phenotypically 
resemble intermediate 1 T cells, were resident in nonlymphoid tis-
sues (46). These differential homing patterns may be explained by 
the expression of CXCR3. Intermediate 1 T cells express significant-
ly more CXCR3 than exhausted KLR cells, and CXCR3 expression is 
critical for the homing of CD8+ T cells into tumors (47). Consistent 
with our finding of inefficient tumor homing by exhausted KLR T 
cells, two previous studies using subcutaneous mouse models of 
cancer found that CX3CR1hi CD8+ T cells contribute little to antitu-
mor immunity (48, 49). One could imagine, however, that a popula-
tion of circulating or spleen-patrolling tumor-reactive CD8+ T cells 
could surveil for disseminated tumor cells and protect against me-
tastasis (50). Thus, future studies could focus on the contributions of 
exhausted KLR CD8+ T cells to antitumor immunity, including 
whether these cells can eventually reach the tumor and undergo dif-
ferentiation to a tumor-homing exhausted 1 phenotype. These pop-
ulations could also potentially provide a blood-based biomarker for 
antitumor immunity or response to ICB (51).

One limitation of our study is that there remain insufficient 
available data from tumor-reactive CD8+ T cells recovered from the 
TdLNs and spleens of human patients with cancer to assess to what 
extent the transcriptional states and phenotypic transitions that we 
identified in our mouse models reflect patterns of differentiation ex-
perienced by antitumor CD8+ T cells in human patients with cancer. 
However, a recent clinical study using adjuvant mRNA vaccination 
in patients with pancreatic cancer identified an enrichment of non-
responders in patients who had their spleens removed during deb-
ulking surgery (52). Like us, the authors speculated that “optimal” 
antigen restimulation in the spleen might be associated with better 
therapeutic responses. Nonetheless, it remains unknown whether 
similar patterns of differentiation also occur in other lymphoid tis-
sues, such as nondraining, distal lymph nodes, that may provide low 
but nonzero levels of antigen that support the differentiation of in-
termediate clonotypes. These studies might be particularly interest-
ing in models of metastasis.

Together, our data highlight a previously unappreciated role for 
the spleen in coordinating the differentiation of tumor-reactive 
CD8+ T cells as they respond to ICB. The splenic intermediate 1 
phenotype that we identified comprised tumor-reactive CD8+ T 
cells that expanded upon ICB treatment and gave rise to a majority 
of tumor-infiltrating clonotypes, suggesting that it is a crucial part of 
the antitumor immune response. This study provides mechanistic 
insight into ICB responses and will inform future studies of antitu-
mor immune responses.

MATERIALS AND METHODS
Study design
Here, we used paired scRNA-seq and TCR sequencing to profile the 
endogenous, tumor-reactive T cells isolated from tumors, TdLNs, 
and spleens of mice treated with ICB to identify the transcriptional T 
cell states that maximally respond to ICB and the anatomic location 
they reside in. We functionally validated our findings using adoptive 
T cell transfer approaches and multiparameter flow cytometry.
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ICB treatment
Mice were injected intraperitoneally with anti–CTLA-4 (clone 
UC10-4F10–11, Bio X Cell) and anti–PD-L1 (clone 10F.9G2, Bio X 
Cell) antibodies on days 7, 10, 13, and 16 after tumor inoculation 
for tumor outgrowth studies or on days 7 and 10 after tumor inocu-
lation for day 14 analyses. Each mouse received 100 μg of each an-
tibody per treatment.

2C T cell adoptive transfer
Spleens and inguinal lymph nodes (iLNs) of 2C RAG2−/–CD45.1+ 
mice were dissected and made into single-cell suspensions as de-
scribed above. Approximately 1 million cells were transferred to 
KP.SIY tumor–bearing mice 7 days after tumor inoculation. Re-
cipient CD45.2+ animals were euthanized and analyzed 3 days 
after 2C T cell transfer. For transfers into secondary recipients, 2C 
T cells were transferred into primary recipients as described 
above. Three days after adoptive transfer, the tumor-draining iLNs 
or spleens of recipient mice were isolated, and CD8+ T cells were 
enriched with the Miltenyi CD8+ T cell isolation kit. Congeni-
cally marked CD45.1+ 2C T cells were then isolated from the 
CD8+ T cells using fluorescence-activated cell sorting, and 50,000 
2C T cells were transferred intravenously into secondary recipient 
C57BL/6 mice bearing day 7 flank KP.SIY tumors. Additional se-
rial transfer experiments were conducted by transferring isolated 
50,000 2C T cells (as described above) into secondary C57BL/6 
recipient mice with day 7 KP flank tumors and into secondary 
Batf3−/− recipient mice with day 7 KP.SIY flank tumors. Second-
ary recipients received ICB 1 and 3 days after adoptive transfer of 
in vivo–primed 2C T cells. TdLNs, spleens, and tumors from sec-
ondary recipients were analyzed 7 days after adoptive transfer of 
in vivo–primed 2C T cells.

In vivo antigen delivery
C57BL/6 splenocytes were isolated as described above, then ACK 
lysed, washed, and pulsed in complete medium for 1 hour at 37°C 
with 0.2 μM SIY peptide. SIY-pulsed splenocytes (20 ×  106) were 
washed and injected intravenously into KP.SIY tumor–bearing mice 
on days 4, 6, and 9 after tumor inoculation. During this experiment, 
some mice were also treated with ICB on days 7 and 10 after tumor 
inoculation. Mice were analyzed on day 14 after tumor inoculation.

scRNA-seq with Seq-Well
Sorted cells were then processed for scRNA-seq using the Seq-Well 
platform with second-strand chemistry, as previously described (53, 
54). Whole-transcriptome libraries were barcoded and amplified us-
ing the Nextera XT kit (Illumina) and were sequenced on a Novaseq 
6000 (Illumina). Hashtag oligo libraries were amplified as described 
previously and were sequenced on a Nextseq 550 (34). Whole-
transcriptome libraries were sequenced to a median depth of >80,000 
reads per cell recovered. Cell hashing libraries were sequenced to a 
medium depth of >3000 reads per cell recovered.

Processing of cell hashing data
Cell hashing data were aligned to hashtag oligo (HTO) barcodes 
using CITE-seq-Count v1.4.2. First, cells receiving fewer than five 
total HTO counts were classified as negatives. Downstream decon-
volution of the hash-tag barcodes and analysis was conducted as 
previously described (8). Thresholds calculated for each sample 
were manually inspected and adjusted if necessary. Cells marked as 

doublets or negatives by this procedure were excluded from down-
stream analysis.

Processing of scRNA-seq data
Raw read processing of scRNA-seq reads was performed as previ-
ously described (55). Briefly, reads were aligned to the mm10 refer-
ence genome and collapsed by cell barcode and unique molecular 
identifier (UMI). Then, cells with fewer than 300 unique genes de-
tected or with greater than 25% mitochondrial gene counts and 
genes detected in fewer than five cells were filtered out. Cell cycle 
scores for individual cells were computed using the CellCycleScoring 
function in Seurat. Data were then integrated by batch using Seurat 
v4.1.1 (55). The ScaleData function was used to regress out the num-
ber of RNA features in each cell, S and G2-M cell cycle scores, and 
fraction of mitochondrial gene expression. The number of principal 
components used for visualization was determined by assessment of 
the elbow plot, and two-dimensional embeddings were generated 
using UMAP. Clusters were identified using Louvain clustering, as 
implemented in the FindClusters function in Seurat. Differentially 
expressed gene analysis was performed for each cluster and between 
indicated cell populations using the FindMarkers function. Data 
were iteratively reclustered to remove clusters with gene expression 
consistent with naïve T cells, monocytes, and NK cells. Label trans-
fer of cluster labels onto proliferating cell populations was per-
formed using the FindTransferAnchors and TransferData functions 
in Seurat (55).

Paired single-cell TCR sequencing and analysis
Paired TCR sequencing and read alignment was performed as described 
previously (56). In summary, TCR transcripts using biotinylated Tcrb 
and Tcra probes and magnetic streptavidin beads were enriched 
from the whole transcriptome amplification product from each 
single-cell library and further amplified using V-region primers and 
Nextera sequencing handles, and the resulting libraries were se-
quenced on an Illumina Novaseq 6000. Processing of raw sequenc-
ing reads was performed using the Immcantation software suite (57, 
58). First, the FilterSeq.py function was used to remove reads with 
an average quality score less than 25. Subsequent steps in CDR3 
mapping were previously described (8). In brief, reads were sorted 
by cell barcode and UMI, and UMIs with fewer than 10 reads were 
discarded. Sets of sequences that comprised less than 30% of the 
sequences obtained for that UMI were discarded. BuildConsensus.py 
function and IgBlast (59) were used to determine consensus se-
quences, and sequences with no consensus sequence were discard-
ed. The remaining TCR sequences were mapped to single-cell 
transcriptomes by matching cell barcodes. To define clonotypes of 
cells, we first segregated cells by mouse and unique Tcrb CDR3 junc-
tion nucleotide sequences. For each unique combination of mouse 
and CDR3β junction, we determined the most common TCRα se-
quence in cells with paired TCR recovery. We then imputed missing 
β chains from cells with recovery of only α chain by matching to 
these combinations of mouse, β chain, and α chain.

Statistical analysis
Statistical analyses were performed using GraphPad Prism (GraphPad) 
and R. All data are shown as means ± SEM. For flow cytometry and 
tumor outgrowth studies, statistical analyses were performed with 
the Mann-Whitney U test for comparisons of two groups, one-way 
analysis of variance (ANOVA) for comparisons among multiple 
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groups, or two-way ANOVA for multiple comparisons over time 
(unless explicitly stated otherwise), with *P < 0.05; **P < 0.01; 
***P < 0.001; and ****P < 0.0001. For one-way and two-way ANOVAs, 
Šidák’s or Tukey’s multiple comparisons tests were used as posttests. 
For each experiment, two to four independent repeats were per-
formed and combined; n numbers are indicated in figure captions. 
Statistical tests accompanying scRNA and single-cell TCR sequenc-
ing analyses are described in detail in figure captions.
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